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Relationships among potential-energy functions
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We analyse recently proposed connection formulas between potential-energy func-
tions for bond stretching, bond bending and molecular interactions, and propose more
convenient and practical expressions. For example, our mathematical relationships
between Morse and Murrel—Mottram potential parameters yield much closer agree-
ment between such potential-energy functions.
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1. Introduction

In a series of papers Lim discussed mathematical connections between
potential-energy functions for bond torsion, bond bending and bond stretching
[1–3]. The author points out that such relationships may be useful for users of
commercial software for molecular dynamics and other computational chemistry
approaches.

In one of the papers Lim compares four potentials for bond stretching:
the simple harmonic oscillator, the more flexible polynomial series and the more
realistic Morse and Murrell–Mottram interactions [3]. A surprising result of that
analysis is a noticeable discrepancy between the connected Morse and Murrell-
Mottram potentials.

In this paper we analyse Lim’s criteria for choosing the potential parameters,
and trace back the origin of the discrepancy between Morse and Murrell—Mottram
functions in order to propose alternative connective equations. We also briefly dis-
cuss Lim’s connection formulas for other models [1,2,4].
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2. Bond stretching potential-energy functions

Following Lim [3], we write the Morse and Murrell–Mottram oscillators as

UM(r) = DM [1 − exp (−αx)]2 , (1)

UMM(r) = −DMM

(
1 + ax

r0

)
exp

(
− a

r0
x

)
, (2)

where x = r −r0 is the displacement from the equilibrium position r0. Defined in
this way the Morse and Murrell–Mottram oscillators are not exactly comparable
because UM(r0) = 0 and UMM(r0) = −DMM, UM(r → ∞) = DM and UMM(r →
∞) = 0. Consequently, Lim introduced the modified Murrell–Mottram potential
UMMM(r) = UMM(r) + DMM that satisfies UMMM(r0) = 0 and UMMM(r → ∞) =
DMM.

The Taylor series for those potential-energy functions are

UM(r) = DMα2
(
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12

α2x4 + · · ·
)

, (3)

UMMM(r) = a2DMM
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0

(
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0
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. (4)

Comparing the coefficients of x in the exponentials of both potentials (1)
and (2) Lim proposed [3]

α = a

r0
. (5)

Therefore, if we require agreement of the coefficients of the quadratic terms
in equations (3) and (4) we have

DMM = 2DM. (6)

The choice (5) that leads to equation (6) is most unfortunate because given
a Murrell—Mottram potential parameter DMM the resulting Morse oscillator
predicts half the dissociation energy as shown in figures 2 and 3 of Lim’s paper
[3].

At first sight it seems to be more reasonable to require the agreement of the
first two terms of the series (3) and (4). Proceeding accordingly we obtain

α = 2a

3r0,
DM = 9DMM

8
, (7)

so that the resulting Morse dissociation energy is closer to the Murrell—Mot-
tram one.
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Figure 1. Murrell–Mottram and Morse potential-energy functions, the latter parametrized
according to equations (5) and (6) (a), equations (7) (b) and equation (8) (c).

If we require exact agreement at infinity in addition to agreement of the
coefficients of the quadratic term we have

DM = DMM, α = a√
2r0

. (8)

We may proceed in a different way and modify the Morse oscillator as

VM(r) = UM(r) − DM = DM
(
e−2αx − 2e−αx

)
. (9)

If we require the agreement of the first two terms of the Taylor expansions
of the potential-energy functions VM(r) and UMM(r) we obtain equation (8) from
just one sensible criterion.

Figure 1 shows the Murrell–Mottram potential-energy function with the
parameters

a = 8.2, r0 = 1.507 Å, DMM = 1.00768 × 10−18 J (10)

chosen by Lim [3]. Figure 1 also shows the Morse function for the three connec-
tive conditions: (a) equations (5) and (6), (b) equations (7) and (c) equation (8).
We appreciate that Lim’s prescription (a) produces the largest discrepancy, that
case (b) gives a good agreement about equilibrium but leads to different dissoci-
ation energies (although the discrepancy is smaller than for the preceding case),
and that case (c) sacrifices agreement about equilibrium to gain exact matching
at infinity.

In general, if UA(r) and UB(r) are two single-well potential-energy functions
satisfying U(r → ∞) = 0, then the connection equations for case (c) are a par-
ticular case of

UA(r0) = UB(r0),
djUA(r)

drj

∣∣∣∣
r=r0

= dj
UB(r)

drj

∣∣∣∣∣
r=r0

, j = 1, 2, . . . , k. (11)
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3. Lennard—Jones and exponential functions

We can apply equations (11) in order to obtain useful relationships between
the Lennard—Jones potential

ULJ(r) = D

m − n

[
n
(r0

r

)m

− m
(r0

r

)n]
, m > n, (12)

and the exponential-n interaction [4]

UE(r) = Ae−Br − C

rn
. (13)

A straightforward calculation shows that

A = nDeξ

ξ − n
, C = ξDrn

0

ξ − n
, ξ = br0 = m + n + 1

2
+
√

(m + n + 1)2 − 4mn

2
,

(14)

and

UE(r) = D

ξ − n

[
ne−b(r−r0) − ξ

(r0

r

)n]
. (15)

Notice that the role of ξ > n in the exponential-n potential is equivalent to the
role of m in the Lennard–Jones one. This result generalises the one derived by
Lim for the exponential-6 interaction [4].

4. Potential-energy functions for bond bending

Lim [2] also discussed the connection between potential-energy functions in
the form of Fourier series

UF(θ) = kF

m∑
n=0

Cn cos(nθ), (16)

for m = 2, and the harmonic cosine function

UC(θ) = kC

2
(cos θ − cos θ0)

2 . (17)

A straightforward calculation based on equations (11) yields

C0 = C2 [2 + cos (2θ0)] , C1 = −4C2 cos θ0, (18)
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and

UF(θ) = 2kFC2 (cos θ − cos θ0)
2 . (19)

Notice that if we take into account this result, some of the connection equations
derived by Lim [2] become trivial.

5. Conclusions

We think that our connection formulas are reasonable alternatives to the
corresponding ones proposed by Lim [1–4], both from theoretical and practi-
cal points of view. If you are to compare results from alternative softwares for
molecular dynamics or other quantum chemistry applications it is convenient to
use clear and straightforward mathematical relationships that give the best agree-
ment between the corresponding potential-energy functions. In the case of bond-
stretching potential-energy functions you can choose, for example, between better
agreement at equilibrium or at long interaction distances.
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